Adaptive generalized crowding for genetic algorithms
نویسندگان
چکیده
The genetic algorithm technique known as crowding preserves population diversity by pairing each offspring with a similar individual in the current population (pairing phase) and deciding which of the two will survive (replacement phase). The replacement phase of crowding is usually carried out through deterministic or probabilistic crowding, which have the limitations that they apply the same selective pressure regardless of the problem being solved and the stage of genetic algorithm search. The recently developed generalized crowding approach introduces a scaling factor in the replacement phase, thus generalizing and potentially overcoming the limitations of both deterministic and probabilistic crowding. A key problem not previously addressed, however, is how the scaling factor should be adapted during the search process in order to effectively obtain optimal or near-optimal solutions. The present work investigates this problem by developing and evaluating two methods for adapting, during search, the scaling factor. We call these two methods diversity-adaptive and self-adaptive generalized crowding respectively. Whereas the former method adapts the scaling factor according to the population’s diversity, the latter method includes the scaling factor in the chromosome for self-adaptation. Our experiments with real function optimization, Bayesian network inference, and the Traveling Salesman Problem show that both diversity-adaptive and self-adaptive generalized crowding are consistent techniques that produce strong results, often outperforming traditional generalized crowding.
منابع مشابه
Solving a generalized aggregate production planning problem by genetic algorithms
This paper presents a genetic algorithm (GA) for solving a generalized model of single-item resource-constrained aggregate production planning (APP) with linear cost functions. APP belongs to a class of pro-duction planning problems in which there is a single production variable representing the total production of all products. We linearize a linear mixed-integer model of APP subject to hiring...
متن کاملAdaptive Rule-Base Influence Function Mechanism for Cultural Algorithm
This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...
متن کاملThe Crowding Approach to Niching in Genetic Algorithms
A wide range of niching techniques have been investigated in evolutionary and genetic algorithms. In this article, we focus on niching using crowding techniques in the context of what we call local tournament algorithms. In addition to deterministic and probabilistic crowding, the family of local tournament algorithms includes the Metropolis algorithm, simulated annealing, restricted tournament...
متن کاملAdaptive Approximate Record Matching
Typographical data entry errors and incomplete documents, produce imperfect records in real world databases. These errors generate distinct records which belong to the same entity. The aim of Approximate Record Matching is to find multiple records which belong to an entity. In this paper, an algorithm for Approximate Record Matching is proposed that can be adapted automatically with input error...
متن کاملA multiobjective cellular genetic algorithm based on 3D structure and cosine crowding measurement
Multiobjective cellular genetic algorithms (MOcGAs) are variants of evolutionary computation algorithms by organizing the population into grid structures, which are usually 2D grids. This paper proposes a new MOcGA, namely cosine multiobjective cellular genetic algorithm (C-MCGA), for continuous multiobjective optimization. The CMCGA introduces two new components: a 3D grid structure and a cosi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 258 شماره
صفحات -
تاریخ انتشار 2014